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Density-functional theory of the kinetics of crystallization of hard-sphere suspensions:
Single conserved order parameter
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A theoretical study is presented of the kinetics of crystallization of a hard-sphere-like colloidal suspension in
a fixed volume based upon the use of time-dependent density-functional theory incorporating conserved par-
ticle dynamics. Distinguishing crystalline order by the particle density alone, we demonstrate that the con-
straints of fixed number and volume lead naturally to the appearance of a new nonuniform minimum in the free
energy corresponding the equilibrium coexistence between crystalline order and disordered suspension. Using
numerical integration, we follow the time dependence of a range of initial spherical crystallites. The normal
and tangential osmotic pressure fields about these growing crystallites are presented and the growing crystallite
is shown to be isolated from the higher pressure of the surrounding disordered suspension by the nonequilib-
rium depletion zone which surrounds it. These results are compared with recent light-scattering studies.
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I. INTRODUCTION ried out on suspensions of silica or polystyrene particles sta-

bilized by polymers bound to the surfadtn the case of ref.

In this paper we present a theoretical study of the kinetic$1], the particles also carried a slight chajgéhe equilib-
of crystallization of a hard-sphere-like colloidal suspensionfium structure factor and freezing transition are found to be
in a fixed volume based upon the use of time-dependerif! reasonable quantitative agreement with those of the hard-

density-functional theory, and incorporating conserved parsphere liquidwith the use of an effective hard-sphere diam-

ticle dynamics. The use of a microscopic statistical theoryet€), and we shall make extensive use of the analogy with
allows us to describe the time-dependent cluster structurB@’d sphere liquids in the course of this paper. Low-angle
and local pressures, transient depletion zones, and stationaf§gNt scattering[2,3] has been used to measure the size of
states all within a single consistent theoretical framework. 9rOWing crystal clusters, making use of the concentration
Crystallization in a fixed volume introduces a Complica_dlfference between crystal and liquid. Scattering from sets of

tion into the standard picture of crystal growth. Due to thecrystal planeshigh angle or Bragg scatterindave also

density difference between crystal and liquid, crystal growthbeen measurefll 4,5 The intensity of the scattering pro-

. ied b inevitable ch in the th q vides a measure of the amount of crystalline material in the
IS accompanied by an Inevitable changeé in the thermo scattering volume, and the width of the scattering peak can

namic states of both phases. In the case of sterically stabfg 1e|ated to an average cluster size, while the magnitude of
lized colloidal suspension, the crystal has a higher density,e \aye vector of the peak is proportional to the inverse of
than the disordered suspension and, consequently, cryst@le |attice spacing in the growing crystallites.
growth is accompanied by a general decrease in the 0Smotic The variation of this last quantity during the course of
pressure of the two-phase system. One of the central theOfQirystallization, measured by Harland and van Me¢j¢nM)
ical concerns of this paper is the consistent treatment of cry§5], provides us with an explicit characterization of the time-
tal growth in the presence of a time-varying thermodynamicdependent state of the crystal, as opposed to simply the time
state. dependence of the cluster size. As this novel feature is par-
In considering the nature of the inhomogeneities in theticular to crystallization under the constraint of fixdidand
crystallizing suspension, we must also take into account th& we shall consider these resul[ts] in some detail. HVM
diffusive character of colloidal particle motion. In the case ofobserved the magnitude of the wave vector at the scattering
pure atomic or molecular liquids, a transient local-densitypeak decreasing monotonically in time for all volume frac-
depletion can be rapidly relaxed by longitudinal modes, aions studied. The duration of this decrease is essentially
process typically much faster than crystal growth itself. Inequal to the time interval over which the total amount of
the case of colloidal suspensions, relaxation of such a locakrystal increases, consistent with the idea that the expansion
density depletion, along with gradients in the osmotic presof the crystal lattice is a direct reflection of the drop in the
sure, are relaxed via diffusive motion of particles. As thisosmotic pressure of the disordered suspension due to crystal-
relaxation typically takes place on time scales similar to thatization. (Note that the crystalline peak is indistinguishable
of crystallization, any theoretical description of crystal from the broad liquid scattering peak for very small crystal-
growth in colloids must take into account the possibility of lites. This limitation leaves a veil over the early history of
nonequilibrium density and osmotic pressure gradients. Thithe clusterg.Equating the decrease of the wave vector with a
feature will be treated in detail in the analysis presented bedniform increase in the dimension of the unit cell, HvM con-
low. verted their peak shifts into monotonic decreases in the crys-
A number of light-scattering studigls-5] have been car- tal volume fraction as crystallization proceeds. The initial
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crystal volume fractions are significantly higher than the fi-tial rather than concentration gradients. One of the goals of
nal value, indicating that the small clusters are under comthis paper is to see how the crystallization predicted by the
pression. For suspensions with a total concentration belowensity-functional theory differs from the classical results of
the melting volume fraction, the final value of the crystal Ref.[3].

concentration is found to be equal to the melting volume The paper is arranged as follows. The equation of motion
fraction. In the case of samples at higher concentrations, th described in Sec. II, along with the boundary conditions.
final crystal concentration does not quite fall to the expected h€ formalism required to calculate the normal and tangen-
final crystal volume fraction, i.e., that of the suspension it-idl components of the pressure is presented in Sec. lIl. In

self. HVM attribute this to the slowness of the coarsening>€C- |V We present the stationary solutions to this equation,
process demonstrating the constraint of fixed volume naturally re-

The analysis can be extended by feeding this crystal vol_sults in two nonun_iform stationary_ density profi_les. The_ timeT
ume fraction into an equation of state of the hard-spher ependent behavior of th? growing plusters IS Qegcrlbed In
crystal to obtain a corresponding pressure, effectively usin ec. V, f°”°W‘?d by a_bnef d|scq33|on Of. the insights on
the crystal-lattice spacing as &@n situ osmotic pressure rystal nucleation prowdgd by .th's. work in Sec. VI. The
gauge[5,6]. This approach neglects the complexity of defin- paper concludes with a discussion in Sec. VII.
ing pressure in the nonuniform suspensisee Sec. Il be-
low) but would be expected to provide sensible estimates in Il. THEORETICAL MODEL
cases where the crystallite radius considerably exceeds the : . - N
interfacial width. The osmotic pressure so obtained also ex- We are '”tefesw‘?' in the description .Of crystallization un-
hibits a monotonic decrease in time. The initial crystal pres-der C%nd_mons n V;'hl'l(.:h ;/.Olume ?P?d Rartlcle_nulmber areb::on-
sure is typically found to be less than that predicted for the?_iwe » 1€, crystafization dm h N ﬁanon|ca ens_e:n fGIL
disordered suspensignsing an analogous liquid equation of IS constraint IS imposed through a zero-particie flux

stae for hard spheresaich led HvM to suggest that the Juitel R T8 PR TR Rl B e Mo
growing cluster is mechanically isolated, to some degre

e, .. o : o
from the bulk disordered suspension by a depletion zone. Solid and liquid phases is that, as crystallization proceeds,

Ackerson and Schzel (AS) [3] recently examined a the- particle concentration in the disordered suspension is de-
oretical model of the crystallization process which addresse Iites%stlr?sligr:uTh;erzlélttesrilgez Ct;) ngnEﬁ]ues_lé/evifz:jngnftg;%%fﬂc
a number of these features of constrained crystallization.ressurg until ’ro wih finall ceaZes at coexigtence
They considered the problem of a spherical crystal growind) ' 9 y '

in a spherical volume of suspension, the latter surrounded b% We have chosen to consider the simplest representation of
a no-flux boundary. The model consists of a crystal-liquid e solid-liquid transition which retains the concentration dif-

interface of zero width coupled to the concentration fields ofference in order to clarify a consistent treatment of conserved

the crystal and the disordered suspension. The interface %ynamms under the constaWtN constraints. In this treat-

driven by the chemical potential difference between the Or_rnent, order and disorder are distinguished solely on the basis

dered and disordered phases via the Wilson-Frefikg! of concentration. The simplicity of this description comes
growth law, modified to include a surface curvature Contri-With a price, we can no longer distinguish a dense metastable

bution to the chemical potential difference. Number conserggggﬂe;g ;lrjes‘?ggjg:j ftfwom?ngtri);] Stz: gjotgseo\‘j‘:?]c%ﬁggﬁﬁg:
vation is imposed, so that the density change on crystalliza- 9

tion couples the motion of the interface to the transport o lon p, above which the system is regarded as crystalline.

material in the adjacent phases. Particle transport in the cry Lk that we fare restr[[ct?q to studying tcrystalllzatlon
tal and disordered suspensions is described with simpl om suspensions of concentrations no greater {hgna

Fick’'s law diffusion. The model exhibits a crossover in yalue which we have taken to be midway between the freez-

growth laws with increasing supercooling. At small super-Ing and melting values. A study of crystallization at higher
coolings the crystal radius increases linearly with time concentrations will be presented in a Iater Paper, which wil
changing over to diffusion-controlled’? dependence at ‘consider a structural order parameter in addition to the con-

higher supercoolings(Note that ‘“supercooling” is used centration. . . .

here to mean “chemical potential difference between the The dynamics of the scalar fiefel(r,t) is ?‘Ss_umed to be
crystal and disordered phase,” and does not refer to the us%overned by the following equation of motion;

of temperature to adjust the relative stability of the two

phases.AS also found that the density of the crystal at the Ip(r.t) —pV?2 oF 1)
cluster center generally underwent an initial rapid increase as ot ap(r)

the small crystallite was compressed by the surrounding sus-

pension. This was followed by a steady density decreasd,he Laplacian ensures particle conservation as the dynamics
mirroring the drop in the osmotic pressure of the disorderedleterministically advances the system toward the stationary
suspension due to crystallization. The field theory we preserstates characterized by a uniform chemical potenial

in this paper differs from this earlier work in that the entire = 6F/Jp(r). The free-energy functiond[p] is the Helm-
suspension, crystal, interface, and disorder, is treated withiholtz free energy as dictated by the canonical constraints of
a single consistent formalism. The interface is allowed tdfixed N, V, andT. This choice of free energy requires some
“adjust”its width, surface curvature contributions appear discussion. The standard choice of free energy in a partial
naturally instead of being explicitly inserted, and particlefunctional differential equation like Eq(l) is the grand-
transport is driven by gradients of the local chemical potencanonical free energy8]. In the canonical ensemble the
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FIG. 1. The two-parabola approximation to the free endig)
of a uniform system of particle densipy The solid, disordered, and
crossover densitiess, p;, andp, are indicated. Reduced units are
defined in Sec. IV.

functional differentiation with respect to the density should
include the density constraint, a difficulty avoided in the

grand-canonical ensemble. In this treatment we have im-
posed the density constraint as a dynamical constrair

through the boundary condition&escribed beloy and,

hence, have neglected it in evaluating the functional deriva;

tives.

The free energy functional is assumed to be of the squarE

gradient form[9]
F= [ artoon+ 5 Fp). @

The local free energy(p) is that of a uniform system char-
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liquid [10] and solid[11] over the limited concentration
range accessible by the one order-parameter theory. Using
reduced density units of (3o 2 (o being the particle
diametey we have sep,;=0.495 andps=0.545. A satisfac-
tory fit of the crystal and liquid pressure over the relevant
density range was achieved with=\g.

The typical representation of supercooling in terms of the
local free-energy functioffi is as the free-energy difference
between the two local minima. So the metastability of the
supercooled liquid, for example, is modeled by lowering the
local minimum representing the solid by an amount which
then becomes the control parameter in the model—the ex-
plicit measure of the free-energy difference between the two
bulk phases. In the case of an athermal system like the hard-
sphere liquid, however, the total density completely specifies
the state—there is no additional independent intensive pa-
rameter such as temperature which can be used to adjust the
relative free energies of the two phases. In light of this, the
local free energyf used in this analysis is as pictured in Fig.

1 for all values of the total concentration. As we shall see, it
5 the constraint that the transition dynamics must conserve
particle number which will render the bulk liquid minimum
to be metastable for total concentrations greater than the
freezing concentratiop, (or, to be exactp, as defined in
ig. 4).

The equation of motion is

)

We shall restrict our attention to the case of a spherical clus-

acterized by the local concentration. Each uniform stable oter confined within a volume of radiuR. We assume that
metastable phase must appear as a minimum in this local freghile flow of material within this spherical region is uncon-

energy. We have chosen to represgpt) here by a double
parabola(see Fig. 1,

. )\l 2 )\S 2
flp)=min = (p=p1)% 5 (P=ps)°|. 3
For the uniform system we have the following expres-
sions for the chemical potential and the osmotic pressure
T

df

M=ot dp’ (4)
df

)

T=Totp g—f,

where po and 7y are the chemical potential and osmotic

strained, there is no flow of particles into or out of this re-
gion. The idea is to moddtrudely) the effect of a growing
cluster competing for material with similar clusters in neigh-
boring regions. The neglect of transfer of particles from one
cluster to another precludes us from investigating the slower
process of coarsening in this work.

In spherical coordinates, the equation of motion is

ap(r,t) 14 SF
a2l sp(ry)
D ¢ [rdf 92
:__2<__K2 —’Z) (8)
r ar<\ dp ar

This equation of motion is first order in time and fourth
order in the radius, and so requires one initial and four
boundary conditions, respectively. We provide an initial pro-

pressure at crystal-disorder coexistence. Substituting the exte p,(r) so that

pression for the local free enerd{p) into the expression for
the osmotic pressure of the uniform system we find

Ao

. ®)

7(p)=mo+ — (p°—p2),

where the subscripte=1 or s, depending on whether the

concentration places us in the disordered or ordered phase.

p(r,00=po(r). 9
The radial boundary conditions are as follows:
ap(r,t)
ar =0, (10

r=0

This approximate equation of state provides a reasonable fit
to accurate empirical equations of state for the hard sphera result of the requirement thatbe differentiable;
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do(r t for all times.
p(r,t) . _— .
ar =0, (11 In the presence of a radial nonuniformity, the osmotic
r=R pressure is a tensor with two distinct components
3
d p[;(rrg,t) _o, 12 I(r)=my(r)ee +m(r)[eestese,l, (16)
r=R

where 7y and 71 are the scalar fields corresponding to the

by virtue of the symmetry arising from the equivalence oformal and tangential components, respectively, of the ten-

neighboring volumes; and sor field. In the case of local uniformity, as defined above,
' the normal and tangential components of the osmotic pres-

#p(r,t) sure are equal.
T =0, (13 In general, the tangential component(r) can be written
r=R [12] as an extension of E5) to the case of a nonuniform
the consequence of the previous conditions and the cond-ens'ty’ 1€,
straint of particle conservation. (1) =m0+ p(r) ((r) — o) — w(r), (17)
Ill. CALCULATING THE NORMAL whereu(r) is the local chemical potential in the nonuniform
AND TANGENTIAL OSMOTIC PRESSURES system,
OF THE GROWING CRYSTAL CLUSTER pes
The time dependence of the osmotic pressure during crys- m(r)=po+ Sp(r)

tallization is the defining complication of crystallization in a

fixed volume and, as demonstrated in Rgf], a valuable f e

source of information in the analysis of the crystallization =pot dp ~ V<p(r), (18
process. The deduction of the osmotic pressure from the ob-

served lattice spacing of a growing crystallite, however, hasind y(r) is the local free-energy density

its subtleties. Some of these have been indicated in the study

by Ackerson and Schizel[3]. In a finite spherical cluster the K2 )

surface tension will provide a contribution to the pressure of P =F(p)+ = (Vp(r)~. (19)
the crystal. When a cluster radius is significantly larger than

the interfacial width, the crystal pressure is well defined andPositive and negative deviations of-(r) from the normal

assuming mechanical equilibrium, we can write component of the osmotic pressuig, correspond to com-
pression and tension, respectively, in the inhomogeneous re-
Tsoli =2—y+71'< ! (14 gion.
solid™ g+ "liquid>» The calculation of the normal osmotic pressurg(r) is a

somewhat more subtle issi£2]. In the case of the station-

where y is the solid-liquid surface tension arig; is the  ary clusters we must have mechanical equilibrium. The bal-
crystal radius. Mechanical equilibrium, however, is achievedancing of all forces which this equilibrium entails can be
in the colloidal suspension through the slow process of difwritten as
fusion, and hence its establishment will be on the same time
scale as the crystal growth itself. How valid then is the as- V-11=0. (20)
sumption of mechanical equilibrium? Furthermore, how o ] ) ) .
should we relate crystal and liquid pressures for clusters opubstituting Eq(16) into this equation, we can write
the same extent as the interfacial width? Can we define in- 5 5
homogeneous pressures for the nonequilibrium cluster? In —— 4+ = my(r)— = 7(r)=0. (21)
Ref. [3] it was suggested that the low-density depletion re- dr r r
gion around the growing crystal may serve to insulate the i ) i )
cluster from the pressure of the bulk liquid. In this section ' "€ resultis a differential equation fary(r), solvable once
we shall derive expressions for the spatially varying normalV€ know(r) [i.e., Eq.(17)] and the normal osmotic pres-
and tangential components of the pressure tensor in the nogy’® at one pointe.g., 7(R) from Eg. (15)]. We are inter-
equilibrium crystal cluster which will be used in the follow- €Stéd, however, in situations for which mechanical equilib-
ing sections. rium does n_ot apply. _ _ _

The osmotic pressure of a uniform crystalline or disor- Such a situation has already bee_n cqn3|dered inan earlier
dered suspension is given by E€). Uniformity here is study [13] on the roI_e of the density d|ffere.nce.|n crystal
defined locally as the vanishing of the first and second de9"oWth when acoustic modes, rather than diffusion, are the
rivatives of the concentration. From the boundary conditiond€@ns of relaxing density inhomogeneities. There it was as-

imposed above, we see that this condition will always applysUmed that the nonequilibrium chemical potential could sta-
at the surface =R, so that bilize pressure gradients in the same way as an external field.

Making use of this same approach, we shall write the non-
equilibrium analog to Eq(20),

d7TN

df
m(R)=mo+ p(R)d— —f[p(R)] (15
Pli=r V-II=—p(r)Vu(r), (22
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which, for the case of the spherical cluster, becomes a=\dk. (28)
dmy 2 du(r) The outer solution is
ot (D =)= —p(r) = (29)
p(r)=p+Au/\+Blr(e P'—Ge’), (29

This expression is used in the following sections to calculate
the normal pressure component. Equati@s) has been in- Where

tegrated numerically fronr=0 with m(0) set equal to e 26R(14+RB)

m7(0). G= , 30
(1-Rp) (30
IV. STATIONARY CRYSTAL CLUSTERS ;
Cc
As a result of the reduced description of the hard-sphere B=(0.52-p = Apu/N\) (e AT—GeP")’ (31)
crystallization by the concentration alone, we are restricted
to looking at liquids whose uniform density is less than B= \/7\—|/K. (32)

(=0.52). (A liquid above this density automatically be-
comes a low-density crystal when we only have density with  Stationary profiles are generated as follows. A value of
which to distinguish the two phasg3he uniform density is r_ is selected. The matching condition for the first deriva-

always a stationary solution for a conserved order parametefiyes provides an expression fAu with respect tar,
Two types of stationary nonuniform profiles are also pos-

sible. The thermodynamically stable phase for densities be- E(rolpe—psl—[pec—p1]

tween the freezing density 0.495, and the upper bound 0.52 Ap= E(ro)/he— 1N, ' (33
is the coexisting solid and liquid. With the assumption of

radial symmetry, this appears as a spherical crystal clusteyhere

surrounded by liquid. Nucleation theory leads us to expect

another stationary solution, amstableone, representing the 1+ a(e” *c4e*c)/(e” *'c—ec)
critical nL_JcIeus. We_shall now see how these twp nqnuni- E(ro)= 1+ B(e “c+Ge*c)/(e “c—Ge'c)
form stationary solutions arise naturally from the time inde- (34)

pendent solutions of Eq1).

A stationary solution satisfies the equatidifr/op(r) Values of A andr are all that is required to generate the
=Au, whereAu=pu— uo andu denotes a uniform chemi- appropriate density profile from the equations above. The
cal potential. This condition can be written as chemical potential determines a unique stationary profile. In
order to determine the corresponding particle density, we
simple integrate the density and divide by the total volume
47R%/3. Finally, in order to present the results in the most
general form, we have used the following reduced units:

df 1 %(rp)
5—/{2? P =Au. (24

Note that this condition is equivalent to
4
[P, _ * 3
d(f-Aup) ,1 (rp) density: p=—3 p 0,

& <t O @9

length: r=r*\/«,
where the functionf(p) is replaced byf —Aup—i.e., the
conservation condition introduces an effective offset be- time: t=t*DN/«?3,
tween the liquid and solid minima.

Thanks to the simple form df(p), we can write down the where it is assumed thaj=\,=\. Note that the superscript
analytic expressions for the stationary profilg) as a func- * denotes the actual or unreduced quantity. The reduced
tion of . Here we generalize the stationary solutions ofequation of motion is
Bagdassarian and Oxtolj§4] to the case of a finite confin-

ing radiusR. The results of this earlier woikL4] are recov- ap(r,t) 1 d? #?p(r,t)
T2 r(p(r,t)—pa)— T

ered whenR—oo. We divide the profile into an inner solu- ot
tion, for p(r)>0.52, and an outer solution fqr(r)<0.52.
The profile and its first derivative are required to be continu-  As r provides a useful measure of cluster size, we plot
ous at the boundary of the two regions, i.e.r atr,, where vsr in Fig. 2 for a range of values of the confining radius
p=pc. The stationary inner solution is R. The freezing and melting concentrations, along wgith
are indicated. Systems with a concentration above 0.52 are
p(r)=pstAulNg+Alr(e” ' —e), (260  not physically relevant herdThe two stationary solutions
found above a concentration of 0.52 consist of the equilib-
where rium phase(the smaller clustgrand the critical “liquid”
fluctuation in the crystafthe larger cluster The critical lig-
uid fluctuation is artificially constrained to be the outer shell
@7 of the entire volumg

(35

le

A=(0.52—ps—cC/\y) m,
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FIG. 2. The radius of stationary clusters[defined as the radial FIG. 4. The free energy of the small and large clusters and the
distance at whichp(r.) = p.] as a function of the overall concentra- uniform suspension as function of the overall concentratidor a
tion p for a range of values of the confining radiBs The freezing ~ confining radius ofR=10. Over much of the concentration range
densityp, , the melting density,, and the crossover density are the large cluster free energy lies below that of the uniform liquid,
indicated. As discussed in the text, only the cases ptip. are of ~ While the small cluster free energy lies above. tthe uniform
physical relevance here. liquid free energy drops below that of the large cluster, indicating
the disappearance of stable coexistence between order and disorder.
The results forp<0.52 clearly identify two stationary Atan even lower density, we see the convergence and vanishing
clusters per density over much of the accessible densit§f both cluster solutions at a spinodal point.
range. Examples of the small and large cluster profiles at a
single density are shown in Fig. 3. Note that a density gap The profiles of the normal and tangential components of
exists between the freezing density and the first density dhe osmotic pressure have been calculated for the large and
which a stationary nonuniform solution occurs. As we in-small stationary clusters at a total densjiy-0.5085 and
creaseR, the radius of the confining volume, we s@e Fig. plotted in Fig. 5. The sharp dip in the tangential component
2) that the large clusters grow, the density gap diminishesthrough the interface reflects the fact that the surface is under
and the small clusters are essentially unchanged. tension. The surface tensiopis simply the area enclosed
We calculated the free energies of the three stationarpetween the two pressure profilg], i.e.,
solutions(small cluster, large cluster, and uniform denjpity
as a function op (see Fig. 4. Over most of the density range
the magnitude of the free energies are ordered as follows:

y= | drtpnn = pr(n)1 (36
0

large clustexuniform densitygsmall cluster.
0.0072

From these results we identify the large cluster as the
equilibrium crystal-liquid coexistence, and the small clusters
as the unstable critical crystal nucleus. As the density de-
creases toward the freezing density, we find that the uniform
free energy drops below that of the large cluster. Let this n

(a)
0.0070

0.0068

density bep, . At a lower density stil(p, in Fig. 4) the large 0.0066 1
and small cluster solutions join and vanish, and we have the 0.0064 |
gap referred to above. AR increasesp, and py converge
rapidly to p, . 0.0062 : : : :
0 2 4 6 8 10
0.56 r
tati I lust
stationary large cluster 0.0012
0.54 (b)
0.0010 |
0 052 4 ._‘stahonarysmall cluster 0.0008 -+ .‘. :,-
"""""""""""""""""""""""""""""" T 0.0006 | tangential
0.50 1 "
0.0004 +
048 ‘ 0.0002 : J : :
0 2 4 6 8 10

FIG. 3. The particle density profiles of the “small” and “large”
stationary clusters gt=0.5085 ancdR=10. Note that the density at FIG. 5. The normal and tangential pressure profitggr) and
the center of the small cluster is less than that of the equilibriumm(r), respectively, calculated f¢a) small and(b) large stationary
crystal in coexistence with the disordered suspension. clusters at a total concentration pf0.5085 andR= 10.
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0.55 0.555
) ) large cluster
e,
054 | 0.535 + '
p(0) p
*~_ small cluster
0.53 0.515
0.52 : ‘ ML 0.495
0.495 0.500 0.505 0.510 0.515 0.520 0 2 4 6 8 10
average p r

) N FIG. 7. Time dependence of the density profile of a growing
FIG. 6. The concentration at the center of the critical nucleusgiyster atp=0.5085 and with a confining radius &=10. The
and the equilibrium crystal as a function of the overall concentra-yjfferent times(in time steps are as follows: 19 (filled circles,

tion. Note that the critical nucleus concentration only exceeds the x 106 (empty circles, 4x 10° (filled squarel 6x10° (empty
equilibrium value at very low concentrations. squarey and 8x 10° (solid line). The initial step profile cluster is

also indicated by a solid line. Note the development of the depletion
Note that, despite the fact that these stationary clusters are itone.

mechanical equilibrium, there is a difference in normal os-
motic pressure between the crystal and liquid phases asl& very slow in developing in time. Smaller clusters were
consequence of the surface tension of the spherical interfacgserved to rapidly shrink in time to reach, ultimately, the
[see Eq(14)]. uniform disordered state. Larger clusters grew, developing a
Having established the critical crystal nucleus and thedepletion region in the liquid adjacent to the advancing crys-
equilibrium coexisting crystal and disordered suspension, wéal interface, and finally coming to rest near the stationary
can make some preliminary observations about crystallizalarge cluster solution. Early calculations exhibited a puzzling
tion. Assumingthat crystallization proceeds by the classictendency to come to rest short of the stationary large cluster
nucleation path, we have the initial and final states of theprofile obtained analytically in Sec. IMSimilarly, initial
growth process. According to the behavior reported in Refclusters larger than the appropriate stationary large cluster
[5], we would expect to see the crystal concentration in thavere found to stop before completely shrinking to the ana-
critical nucleus to be considerably higher than that of thedytical form.) This problem was traced to the choice of the
equilibrium crystal. In fact, we find the opposite for all but radial step lengthAr. As this was decreased the final struc-
the suspension concentrations just abpye as shown in tures approached the analytical result for large cluster. For
Fig. 6. Rather than seeingdecreasingcrystal volume frac-  the calculations reported here, we retaided=0.1.
tion during the course of growth, we find instead that the A detailed discussion of the role of the initial profile and
concentration at the center of the crystal must exhibit a nethe implications for homogeneous nucleation has been left to
increaseduring growth from the critical nucleus. The intu- Sec. VI. Here we focus on the time dependence of those
ition that the small crystallite is under compression is stillcrystal clusters which do grow to reach the equilibrium co-
correct, however, as can be seen in the comparison of thexistence. In Fig. 7 we present snapshots of the density pro-
magnitudes of the osmotic pressure components at the centiile during crystal growth ap=0.5085. The short-time dy-
of the critical nucleus and the coexistence state in Fig. 5. Th@amics is dominated by the relaxation of the unstable square
puzzling origin of this high pressure in the initial crystal profile of the initial cluster. Note the appearance of a density
cluster, in spite of a particle density lower than that of thedepletion in front of the advancing interface at intermediate
equilibrium crystal, lies in theonclassicaltreatment of the times. In Fig. 8 the square of the cluster radiysds plotted
cluster by the field theory. The low crystal concentrations invs time for a number of different densities. We find that the
the center of the critical nucleus is a consequence of the
interfacial region extending into the center of the cluster. It is
possible that the addition of a second-order parameter related
to crystalline structure will alter this result.
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V. DYNAMICS OF CRYSTAL CLUSTERS (2120 |

From a range of starting clusters, we integrated the re-
duced equation of motion forward in time. The integration 60 |
was carried out using an explicit Euler method with a time
step of 0.000 01 and a radial step length of 0.1. The equation
proved unstable to time steps much larger than this. As one 0 2500000

5000000 7500000 10000000

of the checks of the algorithm, the solutions of Sec. IV were time steps
verified to be stationary. FIG. 8. Time dependence of the cluster radius squafefbr

In the absence of fluctuations in the equations of motionthree densities: 0.5180, 0.5085, and 0.5030, in order of decreasing
we had to provide inhomogeneous starting states. Perturbarystallization rates. The growth is linear in time over the interme-
tions of the profile for the small stationary cluster proved todiate time interval indicating &2 growth law.
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FIG. 10. The generic initial cluster profile used in the time-
dependent calculations. In this paper we have chosen to set the
crystal concentration to 0.56 and the disordered suspension concen-
tration to 0.51. The radius, and depletion depti are then varied
r so as to ensure that the overall concentration is satisfied.

FIG. 9. Time dependence of the osmotic pressure fi¢ils o . .
(1) and(b) 7-(r) about a growing crystal at=0.5085 and with  ©Of finite width here in order to be able to calculate free en-

R=10. The various times are indicated as in Fig. 7. Note the rapicergies of the clusters. The fates of the various clusteys at
decrease of normal and tangential components in the crystal regiors 0.5085 are indicated in Fig. 11. Open circles indicate the
cluster eventually disordered while close circles indicate
square of the cluster radius grows linearly with time over theeventual ordering. The boundary between the open and
period between the relaxation of the initial cluster, and theclosed circles indicates some sort of transition state in the
final slowing down as the equilibrium coexistence is ap-reduced space of cluster shapes considered here. Note that
proached, i.e., we havetd? growth law. We were unable to the critical radius increases with increasing depth of the
observe any crossover to a linear growth law at low conceneepletion region due to the tendency of this depletion to
trations. The lack of observable growth@t0.503 is a re- induce transient melting.
sult of the slow dynamics we observe around the critical Calculations of the time-dependent free energies of clus-
nucleus. The rapid relaxation of the initial cluster tends toters as they either order or disorder shows that the free en-
leave them with a profile close to that of the critical nLIC|eUS.ergy decreases monotonically with time for either process.
We calculated the normal and tangential osmotic pressurghis is consistent with the transition state identified in Fig.
fields in the nonequilibrium system of the growing crystal 11 corresponding to a loci of maxima in the cluster free
cluster at a total concentration pf=0.5085 and plotted the energy with respect to cluster radii. The interesting feature,
results in Fig. 9. Both components of the pressure exhibit @owever, is that the free energy of the initial cluster have no
rapid decrease in magnitude in the crystalline region, whileextrema corresponding to this line. In fact, the initial cluster
the disordered suspension persists at a high pressure. Thige energy haveo extrema over the entire space studied.
initial decrease is the result of the development of a deple(The cluster free energy was found to decrease monotoni-
tion zone which has isolated the crystal from the surroundingally with increasing initial radius. This is a result of the
suspension, just as Ackerson and Szhbsuggestef3]. The
osmotic pressure fields then proceed with a slow propagation
of the crystal and its depletion zone out into the disordered 0.025
suspension, leading to a decrease in its osmotic pressure. The
results are quite striking. Rather than a steady decrease in the
crystal pressure during the entire course of crystallization as
suggested by the experimental work of Harland and van
Megen[5] and the theoretical model of Ref3], we find
instead that the crystal completes its pressure drop very rap-
idly, well before the osmotic pressure in the disordered state 0010 7
has had much chance to change.

0.020 1

A 0.015 +

0.005 , : :
0.8 1.1 1.4 1.7 20
VI. ON THE NATURE OF NUCLEATION o

UNDER CANONICAL CONSTRAINTS
FIG. 11. Map of the fates of initial clusters. Initial clusters,

The space of possible clusters is infinite, thanks to theharacterized by a pair of values and A, which go on to crystal-
continuum description via the density function. In order t0jize, are indicated by a filled circle. Clusters which melt are indi-
provide a picture of the nucleation behavior, we chose tQated by an empty circle. As discussed in the text, the dividing line
restrict possible clusters to the shape shown in Fig. 10. Eadketween growth and melting doest correspond to a maximum in
cluster can be identified at a given density by two variablesthe initial cluster free energy. Note that the critical radius increases
the radiusr . and the depletion depth. We used interfaces as the initial depletion region becomes deeper and narrower.



56 DENSITY-FUNCTIONAL THEORY OF THE KINETIGS . .. 3273

steep step profile chosen for the initial cluster. The resultingimes. This can be understood as the critical nuclei at low
large surface tension of this profile dominates the cluster freeoncentrations being too large to fit within the restricted
energy) This apparent inconsistency is a consequence of thepace. We recall that the confining volume was introduced to
difference between the extremely reduced space of clustenodel, in a mean-field sense, the effect of competing crystal
shapes, i.e.,r¢,A), which we have introduced in order to clusters in a bulk suspension. This perturbation of the freez-
try and describe the possible initial clusters, and the muclng transition due to “confinement” by surrounding growing
larger space of actual clusters accessible to the dynamicalusters would be expected to suppress nucleation during the
process. Any ‘“real” transition state exists in this complete later stages of growth. The crystal radius was found to in-
space of clusters. The “watershed” divide we see in Fig. 11crease as“? over times intermediate between the initial tran-
between the open and closed circles is presumably the praient behavior and the final relaxation to the equilibrium
jection of this transition surface down onto the reduced two-state. Examination of the osmotic pressure fields about the
dimensional space with no reason for this projection to repgrowing crystal indicate that, through the development of a
resent local maxima. This result can be taken as a generdepletion zone, the crystal pressure drops quite quickly to a
caution: if you would like to apply classical nucleation value close to the final equilibrium value. The pressure de-
theory to describe cluster “fates” within a reduced space ofcrease out in the disordered suspension takes considerably
constrained initial clusters, then you must ensure that théonger, waiting upon the propagation of the interface.
equations of motion for those clusters incorporate the same The time dependence of the density of the crystal cluster
constraints. appears to be at odds with that reported by Harland and van
Megen [5] and the model calculations of Ackerson and
V1. DISCUSSION Schdzel [3]. Both groups described a crystal density which
) o decreases steadily as crystallization proceeds, with the de-
In this paper we have presented a preliminary study otompression of the crystal cluster being largely slaved to the
crystallization in a hard-sphere colloidal suspension. Thextent of crystallization. In contrast, over the limited density
study is preliminary in the sense that a number of physicajange of our results we find that the crystal density in the
features important for the colloidal crystallization problem yitical nucleus idessthan that of the equilibrium crystal for
(i.e., structural order parameters, accurate free energies, apgbst of the density range and, following some fast relaxation
density-dependent diffusion constanigve been omitted in  f the initial cluster, we see a small but steadgreasein the
order that the fundamental aspects of the constrai and  gensity at the cluster center. These features have been iden-
V can be clearly viewed. We intend to include these aspectgfied with the “nonclassical” description of the nucleus in
in future papers. We have developed a microscopic descriRghich the interface between order and disorder is treated
tion capable of treating the effect of density conservation orgontinuously. It remains to be seen how the incorporation of
the dynamics of the crystal cluster, the time dependence aftryctural order parameters into the density functional theory

the nonuniform osmotic pressure field, and the nonuniformyhanges this picture. Work on this problem is continuing.
stationary and equilibrium states, all within a single consis-

tent formalism. While limited by the lack of crystalline order
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