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Density-functional theory of the kinetics of crystallization of hard-sphere suspensions:
Single conserved order parameter

Robert Wild and Peter Harrowell
School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia

~Received 23 April 1997!

A theoretical study is presented of the kinetics of crystallization of a hard-sphere-like colloidal suspension in
a fixed volume based upon the use of time-dependent density-functional theory incorporating conserved par-
ticle dynamics. Distinguishing crystalline order by the particle density alone, we demonstrate that the con-
straints of fixed number and volume lead naturally to the appearance of a new nonuniform minimum in the free
energy corresponding the equilibrium coexistence between crystalline order and disordered suspension. Using
numerical integration, we follow the time dependence of a range of initial spherical crystallites. The normal
and tangential osmotic pressure fields about these growing crystallites are presented and the growing crystallite
is shown to be isolated from the higher pressure of the surrounding disordered suspension by the nonequilib-
rium depletion zone which surrounds it. These results are compared with recent light-scattering studies.
@S1063-651X~97!06409-X#

PACS number~s!: 64.70.Dv, 81.10.Fq, 82.70.Dd
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I. INTRODUCTION

In this paper we present a theoretical study of the kine
of crystallization of a hard-sphere-like colloidal suspens
in a fixed volume based upon the use of time-depend
density-functional theory, and incorporating conserved p
ticle dynamics. The use of a microscopic statistical the
allows us to describe the time-dependent cluster struc
and local pressures, transient depletion zones, and statio
states all within a single consistent theoretical framework

Crystallization in a fixed volume introduces a complic
tion into the standard picture of crystal growth. Due to t
density difference between crystal and liquid, crystal grow
is accompanied by an inevitable change in the thermo
namic states of both phases. In the case of sterically st
lized colloidal suspension, the crystal has a higher den
than the disordered suspension and, consequently, cr
growth is accompanied by a general decrease in the osm
pressure of the two-phase system. One of the central the
ical concerns of this paper is the consistent treatment of c
tal growth in the presence of a time-varying thermodynam
state.

In considering the nature of the inhomogeneities in
crystallizing suspension, we must also take into account
diffusive character of colloidal particle motion. In the case
pure atomic or molecular liquids, a transient local-dens
depletion can be rapidly relaxed by longitudinal modes
process typically much faster than crystal growth itself.
the case of colloidal suspensions, relaxation of such a lo
density depletion, along with gradients in the osmotic pr
sure, are relaxed via diffusive motion of particles. As th
relaxation typically takes place on time scales similar to t
of crystallization, any theoretical description of cryst
growth in colloids must take into account the possibility
nonequilibrium density and osmotic pressure gradients. T
feature will be treated in detail in the analysis presented
low.

A number of light-scattering studies@1–5# have been car-
561063-651X/97/56~3!/3265~9!/$10.00
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ried out on suspensions of silica or polystyrene particles
bilized by polymers bound to the surface.~In the case of ref.
@1#, the particles also carried a slight charge.! The equilib-
rium structure factor and freezing transition are found to
in reasonable quantitative agreement with those of the h
sphere liquid~with the use of an effective hard-sphere diam
eter!, and we shall make extensive use of the analogy w
hard sphere liquids in the course of this paper. Low-an
light scattering@2,3# has been used to measure the size
growing crystal clusters, making use of the concentrat
difference between crystal and liquid. Scattering from sets
crystal planes~high angle or Bragg scattering! have also
been measured@1,4,5#. The intensity of the scattering pro
vides a measure of the amount of crystalline material in
scattering volume, and the width of the scattering peak
be related to an average cluster size, while the magnitud
the wave vector of the peak is proportional to the inverse
the lattice spacing in the growing crystallites.

The variation of this last quantity during the course
crystallization, measured by Harland and van Megen~HvM!
@5#, provides us with an explicit characterization of the tim
dependent state of the crystal, as opposed to simply the
dependence of the cluster size. As this novel feature is
ticular to crystallization under the constraint of fixedN and
V we shall consider these results@5# in some detail. HvM
observed the magnitude of the wave vector at the scatte
peak decreasing monotonically in time for all volume fra
tions studied. The duration of this decrease is essenti
equal to the time interval over which the total amount
crystal increases, consistent with the idea that the expan
of the crystal lattice is a direct reflection of the drop in t
osmotic pressure of the disordered suspension due to cry
lization. ~Note that the crystalline peak is indistinguishab
from the broad liquid scattering peak for very small cryst
lites. This limitation leaves a veil over the early history
the clusters.! Equating the decrease of the wave vector with
uniform increase in the dimension of the unit cell, HvM co
verted their peak shifts into monotonic decreases in the c
tal volume fraction as crystallization proceeds. The init
3265 © 1997 The American Physical Society
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3266 56ROBERT WILD AND PETER HARROWELL
crystal volume fractions are significantly higher than the
nal value, indicating that the small clusters are under co
pression. For suspensions with a total concentration be
the melting volume fraction, the final value of the crys
concentration is found to be equal to the melting volu
fraction. In the case of samples at higher concentrations,
final crystal concentration does not quite fall to the expec
final crystal volume fraction, i.e., that of the suspension
self. HvM attribute this to the slowness of the coarsen
process.

The analysis can be extended by feeding this crystal
ume fraction into an equation of state of the hard-sph
crystal to obtain a corresponding pressure, effectively us
the crystal-lattice spacing as anin situ osmotic pressure
gauge@5,6#. This approach neglects the complexity of defi
ing pressure in the nonuniform suspension~see Sec. III be-
low! but would be expected to provide sensible estimate
cases where the crystallite radius considerably exceeds
interfacial width. The osmotic pressure so obtained also
hibits a monotonic decrease in time. The initial crystal pr
sure is typically found to be less than that predicted for
disordered suspension~using an analogous liquid equation
state for hard spheres!, which led HvM to suggest that th
growing cluster is mechanically isolated, to some degr
from the bulk disordered suspension by a depletion zone

Ackerson and Scha¨tzel ~AS! @3# recently examined a the
oretical model of the crystallization process which addres
a number of these features of constrained crystallizat
They considered the problem of a spherical crystal grow
in a spherical volume of suspension, the latter surrounded
a no-flux boundary. The model consists of a crystal-liqu
interface of zero width coupled to the concentration fields
the crystal and the disordered suspension. The interfac
driven by the chemical potential difference between the
dered and disordered phases via the Wilson-Frenkel@7#
growth law, modified to include a surface curvature con
bution to the chemical potential difference. Number cons
vation is imposed, so that the density change on crystall
tion couples the motion of the interface to the transport
material in the adjacent phases. Particle transport in the c
tal and disordered suspensions is described with sim
Fick’s law diffusion. The model exhibits a crossover
growth laws with increasing supercooling. At small sup
coolings the crystal radius increases linearly with tim
changing over to diffusion-controlledt1/2 dependence a
higher supercoolings.~Note that ‘‘supercooling’’ is used
here to mean ‘‘chemical potential difference between
crystal and disordered phase,’’ and does not refer to the
of temperature to adjust the relative stability of the tw
phases.! AS also found that the density of the crystal at t
cluster center generally underwent an initial rapid increas
the small crystallite was compressed by the surrounding
pension. This was followed by a steady density decre
mirroring the drop in the osmotic pressure of the disorde
suspension due to crystallization. The field theory we pres
in this paper differs from this earlier work in that the enti
suspension, crystal, interface, and disorder, is treated w
a single consistent formalism. The interface is allowed
‘‘adjust’’its width, surface curvature contributions appe
naturally instead of being explicitly inserted, and partic
transport is driven by gradients of the local chemical pot
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tial rather than concentration gradients. One of the goals
this paper is to see how the crystallization predicted by
density-functional theory differs from the classical results
Ref. @3#.

The paper is arranged as follows. The equation of mot
is described in Sec. II, along with the boundary conditio
The formalism required to calculate the normal and tang
tial components of the pressure is presented in Sec. III
Sec. IV we present the stationary solutions to this equat
demonstrating the constraint of fixed volume naturally
sults in two nonuniform stationary density profiles. The tim
dependent behavior of the growing clusters is described
Sec. V, followed by a brief discussion of the insights
crystal nucleation provided by this work in Sec. VI. Th
paper concludes with a discussion in Sec. VII.

II. THEORETICAL MODEL

We are interested in the description of crystallization u
der conditions in which volume and particle number are c
served, i.e., crystallization in the ‘‘canonical ensemble
This constraint is imposed through a zero-particle fl
boundary condition. The central consequence of this c
straint and the inherent concentration difference between
solid and liquid phases is that, as crystallization procee
particle concentration in the disordered suspension is
pleted. This in turn results in a continuously varying state
the suspension, characterized by a time-dependent osm
pressure, until growth finally ceases at coexistence.

We have chosen to consider the simplest representatio
the solid-liquid transition which retains the concentration d
ference in order to clarify a consistent treatment of conser
dynamics under the constantV,N constraints. In this treat-
ment, order and disorder are distinguished solely on the b
of concentration. The simplicity of this description com
with a price, we can no longer distinguish a dense metast
disordered suspension from the crystal of the same con
tration and are reduced to nominating a crossover concen
tion rc above which the system is regarded as crystalli
This means that we are restricted to studying crystallizat
from suspensions of concentrations no greater thanrc , a
value which we have taken to be midway between the fre
ing and melting values. A study of crystallization at high
concentrations will be presented in a later paper, which w
consider a structural order parameter in addition to the c
centration.

The dynamics of the scalar fieldr(r ,t) is assumed to be
governed by the following equation of motion;

]r~r ,t !

]t
5D¹2

dF

]r~r !
. ~1!

The Laplacian ensures particle conservation as the dyna
deterministically advances the system toward the station
states characterized by a uniform chemical potentialm
5dF/dr(r ). The free-energy functionalF@r# is the Helm-
holtz free energy as dictated by the canonical constraint
fixed N, V, andT. This choice of free energy requires som
discussion. The standard choice of free energy in a pa
functional differential equation like Eq.~1! is the grand-
canonical free energy@8#. In the canonical ensemble th
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56 3267DENSITY-FUNCTIONAL THEORY OF THE KINETICS . . .
functional differentiation with respect to the density shou
include the density constraint, a difficulty avoided in t
grand-canonical ensemble. In this treatment we have
posed the density constraint as a dynamical constr
through the boundary conditions~described below! and,
hence, have neglected it in evaluating the functional der
tives.

The free energy functional is assumed to be of the squ
gradient form@9#

F5E dr f „r~r !…1
k

2
„¹r~r !…2. ~2!

The local free energyf (r) is that of a uniform system char
acterized by the local concentration. Each uniform stable
metastable phase must appear as a minimum in this local
energy. We have chosen to representf (r) here by a double
parabola~see Fig. 1!,

f ~r!5minFl l

2
~r2r l !

2,
ls

2
~r2rs!

2G . ~3!

For the uniform system we have the following expre
sions for the chemical potentialm and the osmotic pressur
p:

m5m01
d f

dr
, ~4!

p5p01r
d f

dr
2 f , ~5!

where m0 and p0 are the chemical potential and osmo
pressure at crystal-disorder coexistence. Substituting the
pression for the local free energyf (r) into the expression for
the osmotic pressure of the uniform system we find

p~r!5p01
la

2
~r22ra

2 !, ~6!

where the subscripta5 l or s, depending on whether th
concentration places us in the disordered or ordered ph
This approximate equation of state provides a reasonab
to accurate empirical equations of state for the hard sph

FIG. 1. The two-parabola approximation to the free energyf (r)
of a uniform system of particle densityr. The solid, disordered, and
crossover densitiesrs , r l , andrc are indicated. Reduced units a
defined in Sec. IV.
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liquid @10# and solid @11# over the limited concentration
range accessible by the one order-parameter theory. U
reduced density units of (3/4p)s23 ~s being the particle
diameter! we have setr l50.495 andrs50.545. A satisfac-
tory fit of the crystal and liquid pressure over the releva
density range was achieved withl l5lS .

The typical representation of supercooling in terms of
local free-energy functionf is as the free-energy differenc
between the two local minima. So the metastability of t
supercooled liquid, for example, is modeled by lowering t
local minimum representing the solid by an amount wh
then becomes the control parameter in the model—the
plicit measure of the free-energy difference between the
bulk phases. In the case of an athermal system like the h
sphere liquid, however, the total density completely speci
the state—there is no additional independent intensive
rameter such as temperature which can be used to adjus
relative free energies of the two phases. In light of this,
local free energyf used in this analysis is as pictured in Fi
1 for all values of the total concentration. As we shall see
is the constraint that the transition dynamics must conse
particle number which will render the bulk liquid minimum
to be metastable for total concentrations greater than
freezing concentrationr l ~or, to be exact,rx as defined in
Fig. 4!.

The equation of motion is

]r

]t
5D¹2S d f

dr
2k¹2r D . ~7!

We shall restrict our attention to the case of a spherical c
ter confined within a volume of radiusR. We assume tha
while flow of material within this spherical region is uncon
strained, there is no flow of particles into or out of this r
gion. The idea is to model~crudely! the effect of a growing
cluster competing for material with similar clusters in neig
boring regions. The neglect of transfer of particles from o
cluster to another precludes us from investigating the slo
process of coarsening in this work.

In spherical coordinates, the equation of motion is

]r~r ,t !

]t
5D

1

r

]2

]r 2 S r
dF

dr~r ,t ! D
5

D

r

]2

]r 2 S rd f

dr
2k2

]2r

]r 2 D . ~8!

This equation of motion is first order in time and four
order in the radius, and so requires one initial and fo
boundary conditions, respectively. We provide an initial p
file r0(r ) so that

r~r ,0!5r0~r !. ~9!

The radial boundary conditions are as follows:

]r~r ,t !

]r U
r 50

50, ~10!

a result of the requirement thatr be differentiable;



o

o

ry
a

on
o

ha
tu

o
a
nd

e
di
im
as
w

i

re
th
on
a

no
-

or

de
n

pl

tic

he
ten-
ve,
res-

m

re-

-
al-
e

-

lib-

rlier
al
the
as-
ta-
eld.

on-
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]r~r ,t !

]r U
r 5R

50, ~11!

]3r~r ,t !

]r 3 U
r 5R

50, ~12!

by virtue of the symmetry arising from the equivalence
neighboring volumes; and

]2r~r ,t !

]r 2 U
r 5R

50, ~13!

the consequence of the previous conditions and the c
straint of particle conservation.

III. CALCULATING THE NORMAL
AND TANGENTIAL OSMOTIC PRESSURES
OF THE GROWING CRYSTAL CLUSTER

The time dependence of the osmotic pressure during c
tallization is the defining complication of crystallization in
fixed volume and, as demonstrated in Ref.@5#, a valuable
source of information in the analysis of the crystallizati
process. The deduction of the osmotic pressure from the
served lattice spacing of a growing crystallite, however,
its subtleties. Some of these have been indicated in the s
by Ackerson and Scha¨tzel @3#. In a finite spherical cluster the
surface tension will provide a contribution to the pressure
the crystal. When a cluster radius is significantly larger th
the interfacial width, the crystal pressure is well defined a
assuming mechanical equilibrium, we can write

psolid5
2g

Rc
1p liquid , ~14!

where g is the solid-liquid surface tension andRc is the
crystal radius. Mechanical equilibrium, however, is achiev
in the colloidal suspension through the slow process of
fusion, and hence its establishment will be on the same t
scale as the crystal growth itself. How valid then is the
sumption of mechanical equilibrium? Furthermore, ho
should we relate crystal and liquid pressures for clusters
the same extent as the interfacial width? Can we define
homogeneous pressures for the nonequilibrium cluster?
Ref. @3# it was suggested that the low-density depletion
gion around the growing crystal may serve to insulate
cluster from the pressure of the bulk liquid. In this secti
we shall derive expressions for the spatially varying norm
and tangential components of the pressure tensor in the
equilibrium crystal cluster which will be used in the follow
ing sections.

The osmotic pressure of a uniform crystalline or dis
dered suspension is given by Eq.~5!. Uniformity here is
defined locally as the vanishing of the first and second
rivatives of the concentration. From the boundary conditio
imposed above, we see that this condition will always ap
at the surfacer 5R, so that

p~R!5p01r~R!
d f

drU
r 5R

2 f @r~R!# ~15!
f
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for all times.
In the presence of a radial nonuniformity, the osmo

pressure is a tensor with two distinct components

P~r !5pN~r !erer1pT~r !@eueu1efef#, ~16!

wherepN andpT are the scalar fields corresponding to t
normal and tangential components, respectively, of the
sor field. In the case of local uniformity, as defined abo
the normal and tangential components of the osmotic p
sure are equal.

In general, the tangential componentpT(r ) can be written
@12# as an extension of Eq.~5! to the case of a nonuniform
density, i.e.,

pT~r !5p01r~r !„m~r !2m0…2c~r !, ~17!

wherem(r ) is the local chemical potential in the nonunifor
system,

m~r !5m01
dF

dr~r !

5m01
d f

dr
2k2¹2r~r !, ~18!

andc(r ) is the local free-energy density

c~r !5 f ~r!1
k2

2
„¹r~r !…2. ~19!

Positive and negative deviations ofpT(r ) from the normal
component of the osmotic pressurepN correspond to com-
pression and tension, respectively, in the inhomogeneous
gion.

The calculation of the normal osmotic pressurepN(r ) is a
somewhat more subtle issue@12#. In the case of the station
ary clusters we must have mechanical equilibrium. The b
ancing of all forces which this equilibrium entails can b
written as

“•P50. ~20!

Substituting Eq.~16! into this equation, we can write

dpN

dr
1

2

r
pN~r !2

2

r
pT~r !50. ~21!

The result is a differential equation forpN(r ), solvable once
we knowpT(r ) @i.e., Eq.~17!# and the normal osmotic pres
sure at one point@e.g.,p(R) from Eq. ~15!#. We are inter-
ested, however, in situations for which mechanical equi
rium does not apply.

Such a situation has already been considered in an ea
study @13# on the role of the density difference in cryst
growth when acoustic modes, rather than diffusion, are
means of relaxing density inhomogeneities. There it was
sumed that the nonequilibrium chemical potential could s
bilize pressure gradients in the same way as an external fi
Making use of this same approach, we shall write the n
equilibrium analog to Eq.~20!,

“•P52r~r !“m~r !, ~22!
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which, for the case of the spherical cluster, becomes

dpN

dr
1

2

r
„pN~r !2pT~r !…52r~r !

dm~r !

dr
. ~23!

This expression is used in the following sections to calcu
the normal pressure component. Equation~23! has been in-
tegrated numerically fromr 50 with pN(0) set equal to
pT(0).

IV. STATIONARY CRYSTAL CLUSTERS

As a result of the reduced description of the hard-sph
crystallization by the concentration alone, we are restric
to looking at liquids whose uniform density is less thanrc
(50.52). ~A liquid above this density automatically be
comes a low-density crystal when we only have density w
which to distinguish the two phases.! The uniform density is
always a stationary solution for a conserved order parame
Two types of stationary nonuniform profiles are also p
sible. The thermodynamically stable phase for densities
tween the freezing density 0.495, and the upper bound 0
is the coexisting solid and liquid. With the assumption
radial symmetry, this appears as a spherical crystal clu
surrounded by liquid. Nucleation theory leads us to exp
another stationary solution, anunstableone, representing the
critical nucleus. We shall now see how these two nonu
form stationary solutions arise naturally from the time ind
pendent solutions of Eq.~1!.

A stationary solution satisfies the equationdF/dr(r )
5Dm, whereDm5m2m0 andm denotes a uniform chemi
cal potential. This condition can be written as

d f

dr
2k2

1

r

]2~rr!

]r 2 5Dm. ~24!

Note that this condition is equivalent to

d~ f 2Dmr!

dr
2k2

1

r

]2~rr!

]r 2 50, ~25!

where the functionf (r) is replaced byf 2Dmr—i.e., the
conservation condition introduces an effective offset
tween the liquid and solid minima.

Thanks to the simple form off (r), we can write down the
analytic expressions for the stationary profiler(r ) as a func-
tion of m. Here we generalize the stationary solutions
Bagdassarian and Oxtoby@14# to the case of a finite confin
ing radiusR. The results of this earlier work@14# are recov-
ered whenR→`. We divide the profile into an inner solu
tion, for r(r ).0.52, and an outer solution forr(r ),0.52.
The profile and its first derivative are required to be contin
ous at the boundary of the two regions, i.e., atr 5r c , where
r5rc . The stationary inner solution is

r~r !5rs1Dm/ls1A/r ~e2ar2ear !, ~26!

where

A5~0.522rs2c/ls!
r c

~e2ar2ear !
, ~27!
e

re
d

h

er.
-
e-
52
f
er
ct

i-
-

-

f

-

a5Als/k. ~28!

The outer solution is

r~r !5r l1Dm/l l1B/r ~e2br2Gebr !, ~29!

where

G5
e22bR~11Rb!

~12Rb!
, ~30!

B5~0.522r l2Dm/l l !
r c

~e2br2Gebr !
, ~31!

b5Al l /k. ~32!

Stationary profiles are generated as follows. A value
r c is selected. The matching condition for the first deriv
tives provides an expression forDm with respect tor c ,

Dm5
E~r c!@rc2rs#2@rc2r l #

E~r c!/ls21/l l
, ~33!

where

E~r c!5
1/r c1a~e2ar c1ear c!/~e2ar c2ear c!

1/r c1b~e2ar c1Gear c!/~e2ar c2Gear c!
.

~34!

Values ofDm and r c are all that is required to generate th
appropriate density profile from the equations above. T
chemical potential determines a unique stationary profile
order to determine the corresponding particle density,
simple integrate the density and divide by the total volu
4pR3/3. Finally, in order to present the results in the mo
general form, we have used the following reduced units:

density: r5
4p

3
r* s3,

length: r 5r * Al/k,

time: t5t* Dl/k2,

where it is assumed thatl l5ls5l. Note that the superscrip
* denotes the actual or unreduced quantity. The redu
equation of motion is

]r~r ,t !

]t
5

1

r

]2

]r 2 S r „r~r ,t !2ra…2
]2r~r ,t !

]r 2 D . ~35!

As r c provides a useful measure of cluster size, we plor
vs r c in Fig. 2 for a range of values of the confining radiu
R. The freezing and melting concentrations, along withrc ,
are indicated. Systems with a concentration above 0.52
not physically relevant here.@The two stationary solutions
found above a concentration of 0.52 consist of the equi
rium phase~the smaller cluster! and the critical ‘‘liquid’’
fluctuation in the crystal~the larger cluster!. The critical liq-
uid fluctuation is artificially constrained to be the outer sh
of the entire volume.#
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3270 56ROBERT WILD AND PETER HARROWELL
The results forr,0.52 clearly identify two stationary
clusters per density over much of the accessible den
range. Examples of the small and large cluster profiles
single density are shown in Fig. 3. Note that a density g
exists between the freezing density and the first densit
which a stationary nonuniform solution occurs. As we
creaseR, the radius of the confining volume, we see~in Fig.
2! that the large clusters grow, the density gap diminish
and the small clusters are essentially unchanged.

We calculated the free energies of the three station
solutions~small cluster, large cluster, and uniform densi!
as a function ofr ~see Fig. 4!. Over most of the density rang
the magnitude of the free energies are ordered as follow

large cluster,uniform density,small cluster.

From these results we identify the large cluster as
equilibrium crystal-liquid coexistence, and the small clust
as the unstable critical crystal nucleus. As the density
creases toward the freezing density, we find that the unifo
free energy drops below that of the large cluster. Let t
density berx . At a lower density still~rg in Fig. 4! the large
and small cluster solutions join and vanish, and we have
gap referred to above. AsR increases,rx and rg converge
rapidly to r l .

FIG. 2. The radius of stationary clustersr c @defined as the radia
distance at whichr(r c)5rc# as a function of the overall concentra
tion r for a range of values of the confining radiusR. The freezing
densityr l , the melting densityrs , and the crossover densityrc are
indicated. As discussed in the text, only the cases withr,rc are of
physical relevance here.

FIG. 3. The particle density profiles of the ‘‘small’’ and ‘‘large’
stationary clusters atr50.5085 andR510. Note that the density a
the center of the small cluster is less than that of the equilibr
crystal in coexistence with the disordered suspension.
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The profiles of the normal and tangential components
the osmotic pressure have been calculated for the large
small stationary clusters at a total densityr50.5085 and
plotted in Fig. 5. The sharp dip in the tangential compon
through the interface reflects the fact that the surface is un
tension. The surface tensiong is simply the area enclose
between the two pressure profiles@12#, i.e.,

g5E
0

`

dr@pN~r !2pT~r !#. ~36!

FIG. 4. The free energy of the small and large clusters and
uniform suspension as function of the overall concentrationr for a
confining radius ofR510. Over much of the concentration rang
the large cluster free energy lies below that of the uniform liqu
while the small cluster free energy lies above. Atrx the uniform
liquid free energy drops below that of the large cluster, indicat
the disappearance of stable coexistence between order and dis
At an even lower densityrg we see the convergence and vanishi
of both cluster solutions at a spinodal point.

FIG. 5. The normal and tangential pressure profilespN(r ) and
pT(r ), respectively, calculated for~a! small and~b! large stationary
clusters at a total concentration ofr50.5085 andR510.
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56 3271DENSITY-FUNCTIONAL THEORY OF THE KINETICS . . .
Note that, despite the fact that these stationary clusters a
mechanical equilibrium, there is a difference in normal o
motic pressure between the crystal and liquid phases
consequence of the surface tension of the spherical inter
@see Eq.~14!#.

Having established the critical crystal nucleus and
equilibrium coexisting crystal and disordered suspension,
can make some preliminary observations about crystall
tion. Assumingthat crystallization proceeds by the class
nucleation path, we have the initial and final states of
growth process. According to the behavior reported in R
@5#, we would expect to see the crystal concentration in
critical nucleus to be considerably higher than that of
equilibrium crystal. In fact, we find the opposite for all b
the suspension concentrations just aboverg , as shown in
Fig. 6. Rather than seeing adecreasingcrystal volume frac-
tion during the course of growth, we find instead that t
concentration at the center of the crystal must exhibit a
increaseduring growth from the critical nucleus. The intu
ition that the small crystallite is under compression is s
correct, however, as can be seen in the comparison of
magnitudes of the osmotic pressure components at the c
of the critical nucleus and the coexistence state in Fig. 5.
puzzling origin of this high pressure in the initial cryst
cluster, in spite of a particle density lower than that of t
equilibrium crystal, lies in thenonclassicaltreatment of the
cluster by the field theory. The low crystal concentrations
the center of the critical nucleus is a consequence of
interfacial region extending into the center of the cluster. I
possible that the addition of a second-order parameter rel
to crystalline structure will alter this result.

V. DYNAMICS OF CRYSTAL CLUSTERS

From a range of starting clusters, we integrated the
duced equation of motion forward in time. The integrati
was carried out using an explicit Euler method with a tim
step of 0.000 01 and a radial step length of 0.1. The equa
proved unstable to time steps much larger than this. As
of the checks of the algorithm, the solutions of Sec. IV we
verified to be stationary.

In the absence of fluctuations in the equations of moti
we had to provide inhomogeneous starting states. Pertu
tions of the profile for the small stationary cluster proved

FIG. 6. The concentration at the center of the critical nucle
and the equilibrium crystal as a function of the overall concen
tion. Note that the critical nucleus concentration only exceeds
equilibrium value at very low concentrations.
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be very slow in developing in time. Smaller clusters we
observed to rapidly shrink in time to reach, ultimately, t
uniform disordered state. Larger clusters grew, developin
depletion region in the liquid adjacent to the advancing cr
tal interface, and finally coming to rest near the station
large cluster solution. Early calculations exhibited a puzzl
tendency to come to rest short of the stationary large clu
profile obtained analytically in Sec. IV.~Similarly, initial
clusters larger than the appropriate stationary large clu
were found to stop before completely shrinking to the a
lytical form.! This problem was traced to the choice of th
radial step length,Dr . As this was decreased the final stru
tures approached the analytical result for large cluster.
the calculations reported here, we retainedDr 50.1.

A detailed discussion of the role of the initial profile an
the implications for homogeneous nucleation has been le
Sec. VI. Here we focus on the time dependence of th
crystal clusters which do grow to reach the equilibrium c
existence. In Fig. 7 we present snapshots of the density
file during crystal growth atr50.5085. The short-time dy
namics is dominated by the relaxation of the unstable squ
profile of the initial cluster. Note the appearance of a dens
depletion in front of the advancing interface at intermedi
times. In Fig. 8 the square of the cluster radiusr c is plotted
vs time for a number of different densities. We find that t

s
-
e

FIG. 7. Time dependence of the density profile of a growi
cluster atr50.5085 and with a confining radius ofR510. The
different times~in time steps! are as follows: 105 ~filled circles!,
23106 ~empty circles!, 43106 ~filled squares!, 63106 ~empty
squares!, and 83106 ~solid line!. The initial step profile cluster is
also indicated by a solid line. Note the development of the deple
zone.

FIG. 8. Time dependence of the cluster radius squaredr c
2 for

three densities: 0.5180, 0.5085, and 0.5030, in order of decrea
crystallization rates. The growth is linear in time over the interm
diate time interval indicating at1/2 growth law.
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3272 56ROBERT WILD AND PETER HARROWELL
square of the cluster radius grows linearly with time over
period between the relaxation of the initial cluster, and
final slowing down as the equilibrium coexistence is a
proached, i.e., we have at1/2 growth law. We were unable to
observe any crossover to a linear growth law at low conc
trations. The lack of observable growth atr50.503 is a re-
sult of the slow dynamics we observe around the criti
nucleus. The rapid relaxation of the initial cluster tends
leave them with a profile close to that of the critical nucle

We calculated the normal and tangential osmotic press
fields in the nonequilibrium system of the growing crys
cluster at a total concentration ofr50.5085 and plotted the
results in Fig. 9. Both components of the pressure exhib
rapid decrease in magnitude in the crystalline region, wh
the disordered suspension persists at a high pressure.
initial decrease is the result of the development of a de
tion zone which has isolated the crystal from the surround
suspension, just as Ackerson and Scha¨tzel suggested@3#. The
osmotic pressure fields then proceed with a slow propaga
of the crystal and its depletion zone out into the disorde
suspension, leading to a decrease in its osmotic pressure
results are quite striking. Rather than a steady decrease i
crystal pressure during the entire course of crystallization
suggested by the experimental work of Harland and
Megen @5# and the theoretical model of Ref.@3#, we find
instead that the crystal completes its pressure drop very
idly, well before the osmotic pressure in the disordered s
has had much chance to change.

VI. ON THE NATURE OF NUCLEATION
UNDER CANONICAL CONSTRAINTS

The space of possible clusters is infinite, thanks to
continuum description via the density function. In order
provide a picture of the nucleation behavior, we chose
restrict possible clusters to the shape shown in Fig. 10. E
cluster can be identified at a given density by two variab
the radiusr c and the depletion depthD. We used interfaces

FIG. 9. Time dependence of the osmotic pressure fields~a!
pN(r ) and~b! pT(r ) about a growing crystal atr50.5085 and with
R510. The various times are indicated as in Fig. 7. Note the ra
decrease of normal and tangential components in the crystal re
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of finite width here in order to be able to calculate free e
ergies of the clusters. The fates of the various clusters ar
50.5085 are indicated in Fig. 11. Open circles indicate
cluster eventually disordered while close circles indic
eventual ordering. The boundary between the open
closed circles indicates some sort of transition state in
reduced space of cluster shapes considered here. Note
the critical radius increases with increasing depth of
depletion region due to the tendency of this depletion
induce transient melting.

Calculations of the time-dependent free energies of c
ters as they either order or disorder shows that the free
ergy decreases monotonically with time for either proce
This is consistent with the transition state identified in F
11 corresponding to a loci of maxima in the cluster fr
energy with respect to cluster radii. The interesting featu
however, is that the free energy of the initial cluster have
extrema corresponding to this line. In fact, the initial clus
free energy haveno extrema over the entire space studie
~The cluster free energy was found to decrease monot
cally with increasing initial radius. This is a result of th

id
n.

FIG. 10. The generic initial cluster profile used in the tim
dependent calculations. In this paper we have chosen to se
crystal concentration to 0.56 and the disordered suspension con
tration to 0.51. The radiusr c and depletion depthD are then varied
so as to ensure that the overall concentration is satisfied.

FIG. 11. Map of the fates of initial clusters. Initial cluster
characterized by a pair of valuesr c andD, which go on to crystal-
lize, are indicated by a filled circle. Clusters which melt are in
cated by an empty circle. As discussed in the text, the dividing
between growth and melting doesnot correspond to a maximum in
the initial cluster free energy. Note that the critical radius increa
as the initial depletion region becomes deeper and narrower.
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56 3273DENSITY-FUNCTIONAL THEORY OF THE KINETICS . . .
steep step profile chosen for the initial cluster. The result
large surface tension of this profile dominates the cluster
energy.! This apparent inconsistency is a consequence of
difference between the extremely reduced space of clu
shapes, i.e., (r c ,D), which we have introduced in order t
try and describe the possible initial clusters, and the m
larger space of actual clusters accessible to the dynam
process. Any ‘‘real’’ transition state exists in this comple
space of clusters. The ‘‘watershed’’ divide we see in Fig.
between the open and closed circles is presumably the
jection of this transition surface down onto the reduced tw
dimensional space with no reason for this projection to r
resent local maxima. This result can be taken as a gen
caution: if you would like to apply classical nucleatio
theory to describe cluster ‘‘fates’’ within a reduced space
constrained initial clusters, then you must ensure that
equations of motion for those clusters incorporate the sa
constraints.

VII. DISCUSSION

In this paper we have presented a preliminary study
crystallization in a hard-sphere colloidal suspension. T
study is preliminary in the sense that a number of phys
features important for the colloidal crystallization proble
~i.e., structural order parameters, accurate free energies
density-dependent diffusion constants! have been omitted in
order that the fundamental aspects of the constraint onN and
V can be clearly viewed. We intend to include these asp
in future papers. We have developed a microscopic desc
tion capable of treating the effect of density conservation
the dynamics of the crystal cluster, the time dependenc
the nonuniform osmotic pressure field, and the nonunifo
stationary and equilibrium states, all within a single cons
tent formalism. While limited by the lack of crystalline orde
parameters to densities just above the freezing density
have presented two important formal developments: the
termination of the stationary nonuniform states under
constraint of fixedN and V, and the expressions for th
time-dependent components of the pressure tensor.

We have shown that the freezing transition is perturbed
higher concentrations as a result of the small confining v
l-
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umes. This can be understood as the critical nuclei at
concentrations being too large to fit within the restrict
space. We recall that the confining volume was introduced
model, in a mean-field sense, the effect of competing cry
clusters in a bulk suspension. This perturbation of the fre
ing transition due to ‘‘confinement’’ by surrounding growin
clusters would be expected to suppress nucleation during
later stages of growth. The crystal radius was found to
crease ast1/2 over times intermediate between the initial tra
sient behavior and the final relaxation to the equilibriu
state. Examination of the osmotic pressure fields about
growing crystal indicate that, through the development o
depletion zone, the crystal pressure drops quite quickly t
value close to the final equilibrium value. The pressure
crease out in the disordered suspension takes conside
longer, waiting upon the propagation of the interface.

The time dependence of the density of the crystal clus
appears to be at odds with that reported by Harland and
Megen @5# and the model calculations of Ackerson an
Schätzel @3#. Both groups described a crystal density whi
decreases steadily as crystallization proceeds, with the
compression of the crystal cluster being largely slaved to
extent of crystallization. In contrast, over the limited dens
range of our results we find that the crystal density in
critical nucleus islessthan that of the equilibrium crystal fo
most of the density range and, following some fast relaxat
of the initial cluster, we see a small but steadyincreasein the
density at the cluster center. These features have been
tified with the ‘‘nonclassical’’ description of the nucleus i
which the interface between order and disorder is trea
continuously. It remains to be seen how the incorporation
structural order parameters into the density functional the
changes this picture. Work on this problem is continuing
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